Усилитель ВЧ (Высокой частоты). Высокочастотные усилители на микросхемах Отечественные вч усилители

Усилитель ВЧ (Высокой частоты). Высокочастотные усилители на микросхемах Отечественные вч усилители

Эта схема ВЧ усилителя передатчика (на 50 МГц) имеет 100 Вт выходной мощности. Данный УВЧ использовал с моим FT-736R для DX SSB. Он усиливает сигнал ровно в 10 раз. Устройство прекрасно подходит для автомобильных радиостанций таксистов, работающих в диапазонах 50 и 27 МГц (с перестройкой контуров).

Если вы хотите построить этот радиочастотный усилитель, собирайте его на двухсторонней печатной плате - для увеличения площади заземления. Транзистор 2SC2782 нуждается в приличном радиаторе. Максимальная мощность на выходе - 120W.

Схема усилителя мощности ВЧ


Рисунок печатной платы

Технические характеристики усилителя:

  • Входная Мощность: 10W
  • Выходная Мощность: 100W
  • Рабочая Частота: 50-52MHz
  • Режим работы: FM - SSB
  • Рабочее Напряжение: 10-16 В постоянного тока
  • Рабочий Ток: 10 ампер.

Схема была взята с одного китайского сайта и успешно повторена, только не использовались элементы детектора автоматического переключения приём-передача (на схеме зачёркнуты). Для создания УВЧ на частоты от 100 мегагерц - воспользуйтесь .


Принципиальная схема и фото преобразователя напряжения обычного автомобильного аккумулятора 12 вольт в сетевое - 220.

Высокочастотные усилители мощности строят по схеме, содержащей каскады усиления, фильтр и цепи автоматики. Усилители характеризуются номинальной выходной и минимальной входной мощностями, диапазо­ном рабочих частот, КПД, чувствительностью к измене­нию нагрузки, уровнем нежелательных колебаний, устой­чивостью и надежностью работы, массой, габаритами, стоимостью.

Получаемые в настоящее время максимальные зна­чения выходной мощности на частотах до 100 МГц со­ставляют несколько десятков киловатт. При существен­но меньшей мощности, отдаваемой отдельными транзи­сторами (не более 200 Вт), эти значения достигаются специальными устройствами сложения сигналов, среди которых наиболее распространены делители и суммато­ры мощности . Существует множество разновидно­стей этих устройств . По величине фазово­го сдвига их делят на синфазные (с фазовым сдвигом суммируемых сигналов ф=0), противофазные (ф = я), квадратурные (ф = п/2) и др.; по виду исполнения - с распределенными и сосредоточенными элементами; по способу соединения с нагрузкой - на последователь­ные и параллельные и т. д.

Одним из основных требований, предъявляемых к устройствам сложения сигналов, является обеспечение наименьшего взаимного влияния отдельных модулей, мощности которых суммируются (так называемая раз­вязка модулей). Посмотрим, как выполняется это требование в простом синфазном сумматоре на транс­форматорах. Схема такого сумматора на трансформа­торах Т4 - Т6 вместе с делителем (на трансформато­рах Т1 - ТЗ) и суммируемыми каскадами (на транзи­сторах VT 1 и VT 2) без цепей смещения и питания показана на рис. 5.4. Трансформаторы Т4 - Т6 имеют коэффициенты трансформации соответственно 1,1 и 1/V2 (здесь r н - сопротивление нагрузки, R Б - бал­ластный резистор, сопротивление которого равно 2г н). При нормальных условиях работы, когда напряжения на коллекторах синфазны и их амплитуды равны, ток в балластном резисторе отсутствует. Трансформатор Т6 приводит к двум последовательно соединенным об­моткам трансформаторов Т4 и Т5 сопротивление 2r н, так что на коллекторе каждого транзистора сопротив­ление нагрузки составляет r н. Представим теперь, что коллектор транзистора VT 2 оказался замкнутым с его эмиттером. В таком случае вторичная обмотка транс­форматора Т5 представляет собой крайне малое сопротивление для ВЧ сигнала, так что сопротивление 2r н, приведенное к первичной обмотке трансформатора Т6, полностью приводится ко вторичной обмотке трансфор­матора Т4, а следовательно, и к коллектору транзисто­ра VT 1. Но параллельно VT 1 при этом оказывается подключен балластный резистор такого же сопротивле­ния, т. е. несмотря на изменение режима работы, во втором каскаде условия работы первого каскада не изменились - он по-прежнему работает на нагрузочное сопротивление r н. Но, поскольку половина его мощно­сти теперь поступает в балластный резистор, в нагруз­ке остается только половинная мощность одного каска­да, что в 4 раза меньше мощности, отдаваемой усили­телем в нагрузку до изменения нормальных условий работы. Чем большее число каскадов используется для получения выходной мощности, тем меньше сказывает­ся изменение условий работы в том или другом каскаде на общей мощности в нагрузке. Например, в усилите­ле с выходной мощностью 4,5 кВт, получаемой в ре­зультате суммирования мощностей 32 транзисторных каскадов, при отказе одного каскада выходная мощ­ность снижалась всего лишь до 4,3 кВт. Таким образом, очень малое взаимное влияние каскадов в устрой­стве сложения мощностей позволяет, максимально используя усилительные свойства каждого транзистора, обеспечить высокую надежность его работы, а следовательно, безотказную работу усилителя мощности в целом.

Рис. 5.4. Схема усилителя со сло­жением мощности на трансформато­рах

Суммирующее устройство выбирается исходя из ха-рактера и условий работы усилителя, поскольку при решении главной задачи - сложения сигналов - можно, используя те или иные особенности конкретного вида сумматора, улучшить другие характеристики уси­лителя, например ослабить некоторые виды нежела­тельных колебаний или уменьшить чувствительность к рассогласованию нагрузки.

Удовлетворительная развязка модулей, а также ма­лый уровень нежелательных колебаний третьего по­рядка, низкая чувствительность к изменению нагрузки и слабое влияние суммируемых каскадов на предвари­тельный усилитель получаются при использовании квадратурных сумматоров мощности. Противофазные сумматоры при удовлетворительной развязке подавля­ют нежелательные колебания второго порядка. Чередо­вание квадратурных и противофазных устройств сло­жения, например, когда два модуля складываются противофазно, а объединенные таким образом пары мо­дулей - квадратурно, в значительной степени сочетает достоинства обоих видов суммирующих устройств. По этим причинам квадратурные и противофазные сумма­торы и делители мощности, выполненные, например, на длинных коаксиальных или полосковых линиях, трансформаторах, получили широкое распространение в усилителях с выходной мощностью от 10 Вт и выше.

Следующий параметр усилителя - минимальная входная мощность - определяется допустимым уров­нем шума и устойчивостью работы и в этой связи за­висит от схемы, режима работы и конструкции усили-теля. Влияние шума на чувствительность усилителя объ­ясняется следующим. Известно, что приводимая к входу усилителя мощность шума определяется по формуле Р ш = = 4kTF ш Дf , где k - постоянная Больцмана; Т - абсолютная температура; F m - коэффициент шума;

Af - ширина полосы частот, в которой определяется

Р ш. Но при заданном отношении сигнал/шум К ш на выходе усилителя мощность входного сигнала Р с не должна быть меньше, чем Р Ш К Ш . Отсюда следует, что минимально допустимое значение входного сигнала, характеризующее таким образом чувствительность уси­лителя, определяется как Р С тш=4kTF щ K ш Дf. При за­данных К ш и Af все входящие в это выражение вели­чины известны, за исключением F JI . С помощью обще­известных соотношений нетрудно показать, что в не­линейном усилителе, каким в общем случае является усилитель мощности, при достаточно большом коэффициенте усиления по мощности первого каскада

где F ш1 - коэффициент шума первого каскада; у т+1 - отношение коэффициентов усиления мощности шума к коэффициенту усиления мощности сигнала в (m+1)-м каскаде усилителя, содержащего п каскадов. В зави­симости от режима работы каскада это отношение оп­ределяется по формуле

входящие в эту формулу коэффициенты находятся по таблицам . Например, для четырехкаскадного уси­лителя мощностью 50 Вт при F m 1 = 6, Y 2 =1,6, Yз=1,7, Y 4 =1,9 имеем F ш =31, что при K ш =120 дБ, Дf=20 кГц и 4kT = 1,62*10- 20 Вт/Гц дает Р Ш =1*10 -14 Вт и P cmin =10 МВт, т. е. при оговоренных условиях мини­мально допустимое значение входного сигнала характе­ризуется напряжением около 1 В на сопротивлении 75 Ом. Заметим, что указанное определение чувстви­тельности справедливо, если на входе усилителя дей­ствует сигнал, в котором мощность шума, по крайней мере, на порядок ниже, чем приведенная к входу мощ­ность собственного шума усилителя Р ш, так как иначе не будет получено приемлемое отношение сигнал/шум Kш. Если эта разница в величинах шума на входе не соблюдается, то для обеспечения требуемого значения K ш между источниками сигнала и усилителем должна быть установлена селективная цепь, приводящая к не­обходимому подавлению шума при заданной расстрой­ке от рабочей частоты.

Рис. 5.7. Схема усилителя с выходной мощностью 15 Вт для диапазона частот 2 - 30 МГц

Таблица 5.1

Параметр

Значение

Выходная мощность, Вт, не менее

Напряжение питания, В

Сопротивление нагрузки, Ом

Входное сопротивление (с КСВ<1,6), Ом

Входное напряжение, В, не менее

Уровень второй гармоники, дБ, не более

Уровень третьей гармоники, дБ, не более

Уровень комбинационных колебаний третьего порядка в пике огибающей двухтонового испытательного сигнала, дБ, не более

Уровень интермодуляционных колебаний третьего порядка по отношению к величине, вызвавшей эти колебания помехи в цепи на­грузки, дБ, не более

Ток потребления при номинальной выходной мощности в режиме однотонового испытатель­ного сигнала, А, не более

Диапазон рабочих температур окружающей среды (при температуре корпуса транзисто­ров не более +110°С), град

Рис. 5.8. Схема усилителя с выходной мощностью 80 Вт для диапазона частот 2 - 30 МГц

Таблица 5.2

Обозначение

Число витков в первичной f и вторич­ной II обмотках, марка провода, вид намотки, особенности кшструкцин

Т1 {см. рис. 5.7)

2 столбика из 6 то­роидальных сердеч­ников каждый, 1000НМ-ЗБ, К5ХЗХ XL,5

I - 3 витка проводом МПО-0,2; II - 1 виток трубчатой конст­рукции с отводом от середи­ны; I обмотка расположена внутри II

Т2 (см. рис. 5.7)

2 столбика из 6 то­роидальных сердеч­ников каждый, 1000НМ-ЗБ, К5ХЗХ X1, 5

I - 6 витков проводом МПО-0,2; II - 1 виток трубчатой конст­рукции с отводом от середи­ны; I обмотка расположена внутри II

{см. рис. 5.7)

1 тороидальный сер­дечник, 400НН-4, К 12Х6Х4, 5

I, II - 6 витков из 12 скру­ченных проводов ПЭВ-0,14, разделенных на 2 группы по 6 проводов; III - 1 виток про­вода МГШВ-0,35 длиной 10см

{см. рис. 5.7)

1 тороидальный сер­дечник, 400НН-4, К20Х 12X6

I - 2 секции по 3,5 витка проводом МГТФЭ-0,14; II-5,5 витка проводом МГТФЭ-0,14

L 3, L 4 {см. рис. 5.7, рис. 5.8)

1 тороидальный сер­дечник, ЮООНМ-ЗБ, К 10X6X3

I - 5 витков провода ПЭВ-0,43

L 5

{см. рис. 5.8)

2 тороидальных сер­дечника, 400НН-4, К 12X6X4, 5

I - 8 витков провода ПЭВ-0,43

Т1 {см. рис. 5.8)

2 столбика из 6 то­роидальных сердеч­ников каждый, ЮООНМ-ЗБ, К5Х

1 - 2 витка проводом МПО-0,2; II - 1 виток трубчатой конст­рукции с отводом от середи­ны; I - обмотка расположе­на внутри II

Т2 {см. рис. 5.8)

2 столбика из 5 то­роидальных сердеч­ников каждый, ЮООНМ-ЗБ, К7Х Х4Х2

I - 2 витка по 2 провода МПО-0,2 с отводом от точки соединения конца 1 провода с началом 2; II - 1 виток труб­чатой конструкции с отводом от середины; I обмотка рас­положена внутри II

Окончание табл. 5.2

Обовначение

Конструкция сердечника трансформатора или дросселя, вид материала и типоразмер

Число витков в первичной I и втерич-ной II обмотках, марка провода, вид намотки, особенности конструкции

ТЗ (см. рис. 5.8)

1 тороидальный сер­дечник, 100НН-4, К 16X8X6

I - 6 витков из 16 скрученных проводов ПЭВ-0,31, разделен­ных на 2 группы по 8 прово--дов, с отводом от точки сое­динения конца 1 группы с на­чалом 2; II - 1 виток прово­да МГШВ-0,35 10 см

Т4 (см. рис. 5.8)

2 столбика из 7 то­роидальных сердеч­ников каждый, 400НН-4, К 16X8X6

I - 1 виток трубчатой конст­рукции с отводом от середи­ны; II - 2 витка из 10 прово­дов МПО-0,2, включенных па­раллельно; II обмотка распо­ложена внутри I

Ширина полосы частот при больших уровнях мощ­ности в значительной степени определяется межкаскад­ными согласующими цепями, в качестве которых ис­пользуются широкополосные трансформаторы специ­альной конструкции, а также цепями коррекции амплитудно-частотной характеристики и цепями обрат­ной связи. Так, на рис. 5.7 и 5.8 показаны схемы уси­лителей с выходной мощностью 15 и 80 Вт для радио­передатчиков мощностью 10 и 50 Вт, работающих в диапазоне 2 - 30 МГц. Их основные характеристики приведены в табл. 5.1, а данные используемых транс­форматоров и дросселей - в табл. 5.2. Особенности этих усилителей - относительно низкий уровень неже­лательных колебаний и сравнительно малая неравно­мерность амплитудно-частотной характеристики. Эти параметры, например, в усилителе на 80 Вт достига­ются применением частотно-зависимой отрицательной обратной связи в выходном каскаде (со вторичной об­мотки трансформатора ТЗ через резисторы R 11 и R 12 на базы транзисторов VT 3 и VT 4) и в предоконечном каскаде (с помощью резисторов R 4 - R 7), а также корректирующими цепями C 2 R 2, C 3 R 3 и R 1 L 1 C 1.

Уменьшить неравномерность усиления в полосе ча­стот можно также, используя цепи коррекции на входе оконечного каскада (конденсатор С7 и индуктивности проводников АБ и ВГ, представляющих собой полоски фольги длиной 30 и шириной 4 мм) и на выходе уси­лителя (индуктивность трансформатора Т4 и конден­сатор С13). Широкополосные трансформаторы, приме­ненные в этих усилителях, способны обеспечить удов­летворительное согласование не только в диапазоне 2 - 30 МГц, но и на более высоких частотах. Однако на частотах выше 30 МГц лучшие характеристики полу­чаются с трансформаторами на полосковых линиях без ферритовых материалов. Такие трансформаторы, например, были использованы в усилителе с выходной мощностью 80 Вт в диапазоне 30 - 80 МГц (табл. 5.3), схема которого показана на рис. 5.9. Особенность это­го усилителя - применение одновременно биполярных и полевых транзисторов. Такое сочетание позволило улучшить шумовые характеристики по отношению к использованию только биполярных транзисторов, а в сравнении с применением только полевых приборов улучшить энергетические характеристики усилителя .

Таблица 5.3

Обозначение

Конструкция трансформатора

Т7, Т 6

Направленный ответвитель в виде микрополоско-вой линии длиной 720 мм и шириной 1,5 мм, вы­полненной на двустороннем фольгированном стеклотекстолите размером 75X20X0,5 мм и по­мещенной между двух стеклотекстолитовых пла­стин, каждая из которых фольгирована с внеш­ней стороны. Общие габариты 75X20X3,5 мм

Т2, ТЗ

6 витков скрутки из двух проводов ПЭВ-0,41 с шагом скрутки 3 витка на 1 см на тороидаль­ном сердечнике МРЮОФ-2-8 К7Х4ХЗ

Т4, Т5

6 витков скрутки из двух проводов ПЭВ2-0,41 с шагом скрутки 3 витка на 1 см на тороидаль­ном сердечнике МРЮОФ-2-8 К12Х7Х6

I обмотка из 1 витка печатного проводника ши­риной 5 мм и II обмотка из 2 витков печатного проводника шириной 2 мм, размещенные друг против друга с разных сторон пластины из двустороннего фольгированного стеклотекстолита размером 80X18X0,5 мм, заключенной между изолирующими стеклотекстолитовыми обкладками

Печатный проводник общей длиной 370 мм и шириной 10 мм на расстоянии 168 мм и шири­ной, плавно меняющейся от 10 до 3 мм, на рас­стоянии 168 - 370 мм, выполненный на стекло­текстолите ФТС - 1 - 35 - Б - 0,12. Первой обмот­кой является первая часть проводника длиной 168 мм; вторая обмотка начинается от середины первой и заканчивается концом проводника. Весь проводник намотан в виде спирали на диэлект­рическом каркасе

Рис. 5.9 Схема усилителя с выходной мощностью 80 Вт для диапазона частот 30---80 МГц

Важным параметром ВЧ усилителя является его КПД. Этот параметр зависит от назначения усилителя, условий его работы и, как следствие, от схемы пост­роения и используемых полупроводниковых приборов. Он составляет 40 - 90 % для усилителей сигнала с по­стоянной или коммутируемой амплитудой (например, при частотной и фазовой модуляции, частотной и амп­литудной телеграфии) и 30 - 60 % для линейных уси­лителей сигналов с амплитудной модуляцией. Более низкие из указанных значений объясняются использо­ванием энергетически невыгодных, но обеспечивающих линейное усиление недонапряженных режимов во всех каскадах, а также режима А в предварительных, а ча­сто и в предоконечном каскаде усилителя. Более высо­кие значения характерны для ключевого режима уси­ления сигналов с постоянной или коммутируемой амп­литудой (80 - 90 %) или для амплитудно-модулирован-ных сигналов (50 - 60 %) при использовании метода раздельного усиления составляющих сигнала . На­пример, КПД не ниже 80 % был получен в широкопо­лосном усилителе на 4,5 кВт с выходным каскадом на 32 транзисторах, построенном с учетом общих реко­мендаций для ключевого режима и при приня­тии мер по устранению сквозных токов . Однако, несмотря на очевидные энергетические преимущества ключевого режима работы, он еще сравнительно редко используется в ВЧ усилителях. Это объясняется рядом особенностей, к которым, например, относятся критич­ность к изменению нагрузки, высокий уровень нежелательных колебаний, большая вероятность превышения предельно допустимых напряжений транзистора и сложность регулировки при получении необходимых фазочастотных характеристик, стабильность которых должна обеспечиваться в условиях изменяющейся на­грузки, напряжения питания и температуры окружаю­щей среды. Кроме того, для реализации ключевого ре­жима на высоких частотах необходимы транзисторы с крайне малой длительностью переходных процессов при включении и выключении.

Перспективным направлением повышения энергети­ческих характеристик усилителей амплитудно-модули-рованного сигнала является квантование сигнала по уровню с раздельным усилением дискретных состав­ляющих и последующим их суммированием с учетом фазовых сдвигов .

В повышении эффективности работы усилителей важную роль играет качество согласования с нагрузкой с учетом возможности ее изменения. В настоящее вре­мя этот вопрос просто ив то же время наиболее ре­зультативно решается применением ферритовых венти­лей и циркуляторов. Однако так обстоит дело на срав­нительно высоких частотах, по крайней мере, выше 80 МГц. С понижением частоты эффективность исполь­зования ферритовых развязывающих устройств резко падает. В этой связи представляют интерес изучение и последующее промышленное освоение обладающих свойствами циркуляторов полупроводниковых невзаим­ных устройств , принципиально допускающих рабо­ту и на низких частотах. Если применение вентилей или циркуляторов невозможно, удовлетворительные ре­зультаты получаются при сочетании обычных согла­сующих устройств с автоматическим управлением ре­жимом работы усилителя. Так, увеличивая напряже­ние питания с ростом сопротивления нагрузки (при неизменном или слегка уменьшенном возбуждении) и снижая его с уменьшением сопротивления нагрузки при увеличении возбуждения, можно получить не только постоянную выходную мощность, но и сохранить в ус­ловиях изменяющейся нагрузки то высокое значение КПД, которое было получено в номинальном режиме. Возможности такого способа стабилизации выходной мощности, однако, ограничены предельно допустимыми токами и напряжениями используемого транзистора, а также техническими возможностями согласования ма­лых сопротивлений. По этим причинам реализуемая в настоящее время область нагрузочных сопротивлений, в которой таким путем еще можно добиться сравни­тельно стабильной выходной мощности, ограничена, как показали испытания усилителя с выходной мощ­ностью 4,5 кВт, значением КСВН, не превышающим 3.

Эффект малой чувствительности к рассогласованию нагрузки можно получить и при построении усилителя по схеме сложения мощностей с использованием квад­ратурных сумматоров и делителей мощности . При соответствующем напряжении возбуждения такого уси­лителя можно добиться, несмотря на изменение режи­ма работы каждого из суммируемых каскадов, незна­чительного изменения общего тока потребления и сум­марной выходной мощности. При испытаниях таких усилителей было отмечено, что изменение выходной мощности при рассогласовании нагрузки получается таким же, как и в линейных цепях, т. е. описывается выражением, близким к Р/Р н =4р/(1+р) 2 , где Р н и Р - мощности в номинальной и рассогласованной на­грузке, ар - КСВН, характеризующий степень рассо­гласования. Такое изменение в среднем, как показали сравнительные испытания, примерно вдвое меньше, чем у усилителя, построенного, например, по двухтакт­ной схеме.

Существуют и другие способы уменьшения чувст­вительности усилителя к рассогласованию нагрузки, однако все они в той или иной степени уступают рас­смотренным.

К числу основных параметров усилителя в послед­нее время стали относить уровень нежелательных ко­лебаний, возникающих в процессе усиления полезного сигнала. Такие колебания появляются в усилителе мощности вследствие нелинейных процессов под влия­нием полезного сигнала f и помех, поступающих из тракта формирования сигнала (f ф), источника пита­ния (f п) и антенны радиопередатчика (f а). Посторон­ние колебания (помехи) из тракта формирования сиг­нала приводят к нежелательным излучениям радиопере­дающего устройства не только на частотах этих коле­баний fф, но и на частотах, образующихся под их влия­нием комбинационных колебаний mf ± nf ф . Уровень та­ких излучений определяется относительным уровнем нежелательных колебаний на выходе тракта формиро­вания, его изменением (преобразованием) в усилителе мощности, а также фильтрующими и излучающими свойствами следующих за усилителем узлов радиопе­редающего устройства. Изменение отношения помеха/ сигнал в усилителе (K у) определяется схемой вклю­чения транзистора, режимом работы каскадов, значе­нием и частотой полезного сигнала и помехи.

Наибольшее изменение отношения помеха/сигнал наблюдается в усилителе с ОЭ, а также при малом вы­ходном сопротивлении источника сигнала r г в усили­теле с ОБ и при малом сопротивлении нагрузки r н в усилителе с ОК. С увеличением r г в усилителе с ОБ и r н в усилителе с О"К K у ->1. При работе усилителя в режимах А и В с любым включением транзистора относительный уровень помехи не изменяется; смеще­ние режима работы в сторону режима С приводит к росту, а в сторону режима АВ, наоборот, к уменьше­нию относительного уровня помехи; при этом рост бо­лее заметен, чем уменьшение. Повышение напряжен­ности режима уменьшает относительный уровень поме­хи. Чем больше значение полезного сигнала, тем при одном и том же режиме работы больше изменяется от­ношение помеха/сигнал. С ростом частоты сигнала и помехи изменение отношения помеха/сигнал уменьша­ется.

Возникающие под действием помехи комбинацион­ные колебания особенно опасны при работе усилителя в режиме С, где их уровень на выходе усилителя со­измерим с уровнем помехи. С изменением режима ра­боты от С к А уровень комбинационных колебаний вто­рого порядка (f±fф) монотонно убывает, а третьего (2f±fф) проходит через 0 в режиме В и по достиже­нии минимума в области отрицательных значений, сви­детельствующей об изменении фазы колебаний на про­тивоположную, при приближении к режиму А стремит­ся к 0.

При прочих равных условиях наибольшим подавле­нием комбинационных колебаний отличается усилитель с ОК, а затем усилители с ОБ и ОЭ. В многокаскад­ном усилителе, в отличие от однокаскадного, помехой для каждого следующего каскада, начиная со второго, являются не только усиленные нежелательные колеба­ния тракта формирования, но и комбинационные, а также гармонические колебания предыдущих каскадов. Осо­бенно велико влияние второй гармоники; она увеличивает уровни комбинационных колебаний второго и третьего порядков и уменьшает отношения помеха/сигнал. Это в основном проявляется в режиме С и фактически отсут­ствует в А. Под ее действием линейный режим работы (K у =1) смещается из режима В в С. Эти изменения прямо противоположны, если фазу второй гармоники как-то искусственно изменить на л.

Малый уровень комбинационных колебаний, незна­чительное ухудшение отношения помеха/сигнал и одно­временно приемлемые энергетические характеристики характерны для усилителя, предварительные каскады которого работают в режимах А - В, а выходной - в В - С. При включении транзисторов по схеме ОК ре­жимы В - С можно использовать и в предварительных каскадах, но в выходном каскаде включение по схеме ОК неприемлемо из-за высокой восприимчивости уси­лителя к сигналам посторонних радиопередатчиков. Наилучшим для выходного каскада является включе­ние прибора по схеме ОБ или ОЭ. При этом ухудшение отношения помеха/сигнал в усилителе при малом уровне комбинационных колебаний может составить максимум 3 дБ. Но при неграмотном проектировании усилителя это значение может возрасти до 20 дБ, а наибольший уровень нежелательных колебаний будет не только на частоте по­мехи, но и на частотах, обусловленных этой помехой ком­бинационных колебаний.

При расстройке по частоте между полезным сигна­лом и помехой наиболее эффективно подавляются по­мехи в усилителях с фильтрами. Подавление реализу­ется как при электронно-коммутируемых фильтрах, так и путем построения усилителя на основе мощного авто­генератора, управляемого с помощью системы фазовой автоподстройки частоты. В последнем случае удается получать ослабления нежелательных составляющих - до 70 - 80 дБ, начиная уже с 5-процентной отстройки их час­тоты от частоты полезного сигнала .

Существующие в настоящее время транзисторы в недонапряженном режиме работы каскада позволяют получить уровень интермодуляционных колебаний третьего порядка - (15 - 30) дБ по отношению к вы­звавшей их помехе при включении по схеме ОЭ, при­мерно на 15 дБ меньше при включении по схеме ОБ и, наоборот, на 15 дБ больше при включении по схеме ОК . Дополнительное подавление около 15 - 20 дБ мож­но получить, используя квадратурное суммирование сигналов модулей в выходном каскаде и еще, как минимум, 15 дБ, применяя на выходе усилителя ферри-товый вентиль или циркулятор .

Наибольший уровень нежелательных колебаний на­блюдается на гармониках полезного сигнала. В одно-каскадном усилителе без принятия каких-либо мер по их подавлению этот уровень для второй и третьей гар­моник составляет обычно - (15 - 20) дБ. Включением каскадов по схеме сложения мощностей с применением квадратурных и противофазных сумматоров и делите­лей его удается снизить до - (30 - 40) дБ. Если за уси­лителем устанавливается блок фильтров, то этот уро­вень уменьшается еще на величину затухания соответ­ствующего фильтра в полосе задержания.

С помощью фильтров можно добиться высокого уровня подавления гармонических составляющих. Од­нако следует подчеркнуть, что ослабить гармоник;! до уровня ниже - 120 дБ можно только при очень тща­тельном экранировании ВЧ каскадов и устранении в тракте после усилителя мощности различных кон­тактных соединений, в том числе и ВЧ разъемов, в ко­торых могут образоваться гармонические колебания с тем же уровнем.

Как видно, существующие технические решения обеспечивают высокое подавление нежелательных ко­лебаний. Однако в ряде случаев оно все же оказыва­ется недостаточным для нормальной работы аппарату­ры. Так, при сближении расположенных на подвижных средствах приемопередатчиков или при работе в соста­ве радиокомплексов, где самая разнообразная аппара­тура сосредоточена и должна функционировать в усло­виях крайне ограниченного пространства, радиоприемники нередко не могут работать со своими корреспон­дентами, как только включается расположенный побли­зости радиопередатчик другой линии связи. Такая си­туация возникает вследствие воздействия на приемни­ки некоторых нежелательных излучений радиопередат­чика. К ним в первую очередь относятся шумы. Не­смотря на малый уровень, именно они пролетавляют

наибольшую опасность в указанных условиях, так как, обладая непрерывным спектром и слабо меняющейся с расстройкой спектральной плотностью, могут, если не принять необходимых мер, практически полностью парализовать работу расположенных рядом приемни­ков .

Большую опасность в рассматриваемой ситуации представляют помехи из тракта формирования сигнала передатчика и образованные ими в усилителе мощно­сти комбинационные колебания, которые, как и шумы, занимают обширную область частот и не поддаются существенной минимизации при построении усилителя по рассмотренному ранее принципу прямого покаскад­ного усиления мощности.

Предлагаемый вниманию читателей высокочастотный усилитель может найти самое широкое применение. Это и антенный усилитель для радиоприемника, и усилительная приставка к осциллографу с низкой чувствительностью канала вертикального отклонения, и апериодический усилитель ПЧ, и измерительный усилитель.

Вход и выход усилителя рассчитаны на включение в иинию с волновым сопротивлением 75 Ом. Полоса рабочих частот усилителя 35 кГц- 150 МГц при неравномерности на краях диапазона 3 дБ. Максимальное неискаженное выходное напряжение 1 В, коэффициент усиления (при нагрузке 75 Ом) - 43 дБ, коэффициент шума на частоте 100 МГц -4,7 дБ. Питается усилитель от источника напряжением 12,6 В, потребляемый ток 40 мА.

Принципиальная схема усилителя приведена на рисунке. Он представляет собой две последовательно включенные усилительные ячейки, в каждой из которых резистивные усилительные каскады на транзисторах N1, Т3 нагружены на эмиттерные повторители на транзисторах Т2, Т4. Для расширения динамического диапазона ток через последний эмиттерный повторитель выбран равным около 20 мА. Амплитудная и частотная характеристики усилителя сформированы элементами цепи час-тотнозависимой обратной связи R4C2, R10C5 и дросселями простой высокочастотной коррекции Др1 и Др2.

Конструктивно усилитель выполнен на печатной плате из фольгированного стеклотекстолита и помещен в латунный посеребренный корпус.

Разъемами служат высокочастотные соединители СР-75-166 Ф. Высокочастотные дроссели Др1 и Др2 бескаркасные. Их обмотки содержат по 10 витков провода ПЭВ-1 0,25, диаметр обмоток 5 мм.

Если усиление 43 дБ является чрезмерным, можно использовать только одну усилительную ячейку, причем в зависимости от целевого назначения либо на транзисторах T1. Т2 с напряжением питания + 5 В, либо на транзисторах Т3, Т4 с напряжением питания +12,6 В. В первом случае ниже коэффициент шума, однако меньше и максимальное выходное напряжение (около 400 мВ); во втором случае коэффициент шума несколько выше, зато максимальное напряжение на,нагрузке 75 Ом составляет 1 В. Усиление обеих усилительных ячеек примерно одинаково (21-22 дБ) во всем диапазоне указанных рабочих.частот, причем при использовании одной ячейки полоса частот еще шире (от 30 кГц до 170 МГц при неравномерности на краях диапазона 3 дБ).

В заключение необходимо отметить, что при сборке усилителя обязательно строгое соблюдение требований, предъявляемых к монтажу в дециметровом диапазоне.

Источник: Радио 7/76

C этой схемой также часто просматривают:

Потребляемый ток - 46 мА. Напряжение в цепи смещения V bjas определяет уровень выходной мощности (коэффициент передачи) усилителя

Рис.33.11. Внутреннее строение и цоколевка микросхем TSH690, TSH691

Рис. 33.12. Типовая включения микросхем TSH690, TSH691 в качестве усилителя в полосе частот 300- 7000 МГц

и может регулироваться в пределах 0-5,5 (6,0) В. Коэффициент передачи микросхемы TSH690 (TSH691) при напряжении смещения V bias =2,7 В и сопротивлении нагрузки 50 Ом в полосе частот до 450 МГц составляет 23(43) дБ, до 900(950) МГц - 17(23) дБ.

Практическая включения микросхем TSH690, TSH691 приведена на рис. 33.12. Рекомендуемые номиналы элементов: С1=С5=100- 1000 пФ; С2=С4=1000 пФ; С3=0,01 мкФ; L1 150 нГн; L2 56 нГн для частот не свыше 450 МГц и 10 нГн для частот до 900 МГц. Резистором R1 можно регулировать уровень выходной мощности (можно использовать для системы автоматической регулировки выходной мощности).

Широкополосный INA50311 (рис. 33.13), производимый фирмой Hewlett Packard, предназначен для использования в аппаратуре подвижной связи, а также в бытовой радиоэлектронной аппаратуре, например, в качестве антенного усилителя или усилителя радиочастоты. Рабочий диапазон усилителя 50-2500 МГц. Напряжение питания - 5 В при потребляемом токе до 17 мА. Усредненный коэффициент усиления

Рис. 33.13. внутреннего строения микросхемы ΙΝΑ50311

10 дБ. Максимальная мощность сигнала, подводимого к входу на частоте 900 МГц, не более 10 мВт. Коэффициент шума 3,4 дБ.

Типовая включения микросхемы ΙΝΑ50311 при питании от стабилизатора напряжения 78LO05 приведена на рис. 33.14.

Рис. 33.14. широкополосного усилителя на микросхеме INA50311

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Широкополосные усилители являются неотъемлемой частью многихрадиотехнических систем и устройств. В ряде случаев помимо прочих к ним предъявляются требования согласования со стандартным 50- либо 75-омным трактом. Одним из наиболее удачных схемных решений построения таких

усилителей является использование перекрестных обратных связей (Л1, Л2, Л3), обеспечивающих согласование по входу и выходу, неизменное значение верхней граничной частоты при увеличении числа каскадов усилителей и высокую повторяемость их характеристик. Кроме того, усилители с перекрестными обратными связями практически не требуют настройки.

Технические характеристики усилителя:

  1. Полоса рабочих частот.. 0,5-70 МГц.
  2. Выходное напряжение, не менее... 1 V.
  3. Коэффициент усиления.....20±1 Дб.
  4. Входное/выходное сопротивление.. 50 Ом.
  5. Потребляемый ток........ 120мА.
  6. Напряжение питания..........12В.
  7. КСВН по входу, не более.........1,5.
  8. КСВН по выходу, не более.........3.
  9. Габаритные размеры..... 70x45 мм.

Принципиальная схема

На рис. 1 приведена принципиальная схема усилителя с перекрестными обратными связями, в котором выходной каскад реализован по схеме Дарлингтона, то есть, использовано последовательно-параллельное включение транзисторов, что позволяет увеличить уровень выходного напряжения (Л.4). На рис.

2 приведен чертеж печатной платы.

Усилитель содержит два предварительных каскада на транзисторах МЕ1 и МЕ2 и выходной каскад на транзисторах МЕЗ и МЕ4, включенных по схеме Дарлингтона.

Все каскады усилителя работают в режиме класса А с токами потребления 27 мА, которые устанавливаются подбором номиналов резисторов R1, R5, R9, R13. Резисторы R3, R7, R10, R14 являются резисторами местной обратной связи. Резисторы R4, R8, R12 - резисторы общей обратной связи.

Рис. 1. Принципиальная схема широкополосного усилителя ВЧ.

Печатная плата (рис. 2) размером 70x45 мм изготавливается из фольгированного с двух сторон стеклотекстолита толщиной 2...3 мм. Пунктирными линиями на рис.

2 обозначены места металлизации торцов, что может быть сделано с помощью металлической фольги, которая припаивается к нижней и верхней части платы.

Рис.2. Печатная плата усилителя ВЧ.

Настройка усилителя состоит из следующих этапов. Вначале с помощью резисторов R1, R5, R9, R13 устанавливаются токи покоя транзисторов усилителя. Затем, варьируя в небольших пределах номиналом резистора R4, минимизируется коэффициент стоячей волны напряжения по входу усилителя.

Коэффициент стоячей волны напряжения по выходу усилителя минимизируется с помощью резистора R12. Изменением номинала резистора R8 регулируется полоса пропускания и коэффициент усиления усилителя.

При необходимости верхняя граничная частота усилителя может быть увеличена. Для этого следует заменить транзисторы КТ315Г на более высокочастотные. В этом случае для схемы, приведенной на рис.

1, верхняя граничная частота будет составлять величину порядка 0,25...0,3 Fт, где Fт - граничная частота коэффициента передачи тока базы транзистора (Л.5). Использование рассматриваемого схемного решения позволяет осуществлять создание усилителей с верхней граничной частотой до 2 ГГц (Л.2). При их построении следует учитывать, что цепи общей обратной связи, состоящие из элементов С4, R4; С6, R8; С7, R12, должны быть по возможности короче.

Это объясняется необходимостью устранения излишней фазовой задержки сигнала в этих цепях. В противном случае амплитудно-частотная характеристика усилителя в области верхних частот оказывается с подъёмом. При значительном удлинении указанных цепей возможно самовозбуждение усилителя.

Титов А. Рк2005, 1.

Литература:

  1. Титов А. А. Упрощенный расчет широкополосного усилителя. Радиотехника, 1979, №6, с. 88-90.
  2. Авдоченко Б.И., Дьячко А.Н. и др. Сверхширокополосные усилители на биполярных транзисторах. Техника средств связи. Сер. Радиоизмерительная техника, 1985, Выл. 3, с. 57-60.
  3. Абрамов Ф.Г., Волков Ю.А. и др. Согласованный широкополосной усилитель. Приборы и техника эксперимента. 1984. №2, с. 111-112.
  4. Титов А.А., Ильющенко В.Н.Широкополосной усилитель. Патент по полезную модель №35491 Рос. агентства по патентам и товарным знакам. Опубл. 10.01.2004 Бюл. 1.
  5. Петухов В.М.Транзисторы и их зарубежные аналоги: Справочник в 4 томах.

Самое обсуждаемое
Как определить кто звонил со скрытого номера на мегафон, супер аон от мегафон Как определить кто звонил со скрытого номера на мегафон, супер аон от мегафон
Планшет не видит сим-карту: исправляем неполадки самостоятельно «Шаловливые ручки» и последствия бездумной торопливости их обладателя Планшет не видит сим-карту: исправляем неполадки самостоятельно «Шаловливые ручки» и последствия бездумной торопливости их обладателя
Подключение жесткого диска через usb, пошаговая инструкция Подключить обычный жесткий диск через usb Подключение жесткого диска через usb, пошаговая инструкция Подключить обычный жесткий диск через usb


top